Enough is not enough

Home

Write

Setting

About Me

  • 분류 전체보기 (703)
    • Seohee Park (16)
      • Career에 관한 생각 (7)
      • 회고록 (9)
    • AI Research Topic (211)
      • Generative AI (14)
      • Human Understanding (67)
      • Model Engineering (13)
      • 3D Vision (23)
      • Object Understanding (48)
      • Computer Vision Basics (46)
    • Development & Tools (292)
      • Frameworks & Libraries (68)
      • Hardware & Acceleration (12)
      • Programming Languages (42)
      • Tools & Environments (79)
      • Web & Services (1)
      • 삽질 기록 (56)
      • Etc. (34)
    • 기타 (184)
      • 한빛미디어 리뷰 2019~2024 (65)
      • SQL-D (33)
      • 선형대수학 및 기타 수학 (9)
      • CS 학부 및 대학원 과목 (22)
      • 논문 작성 관련 참고 (10)
      • 티스토리 (3)
      • 참고자료 (39)
11-09 08:47
Dark
no image
[Paper Review] Generalized Focal Loss : Learning Qualified and Distributed Bounding Boxes for Dense Object Detection
Li, Xiang, et al. "Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection." arXiv preprint arXiv:2006.04388 (2020). github : https://github.com/implus/GFocal implus/GFocal Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection - implus/GFocal github.com Abstract One-stage detector는 기본적으로 객체 탐지 문제를 dense c..
2020.07.20
AI Research Topic/Model Engineering
Prev 1 2 Next
Designed By ushin20

티스토리툴바