AI Research Topic/Object Detection

[Object Detection] YOLO style 로 Bounding Box 값 바꾸기

꾸준희 2019. 9. 17. 15:51
728x90
반응형



기존 Bounding Box 좌표 값인 (x1, x2, y1, y2) 형식을
Yolo Style인 이미지 크기에 대한 비율 값으로 바꾸고, (centerX, centerY, w, h) 형식으로 바꾸는 소스코드이다.

def convert(size, box):
    dw = 1./size[0]
    dh = 1./size[1]
    x = (box[0] + box[1])/2.0
    y = (box[2] + box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

im=Image.open(img_path)
w= int(im.size[0])
h= int(im.size[1])


print(xmin, xmax, ymin, ymax) #define your x,y coordinates
b = (xmin, xmax, ymin, ymax)
bb = convert((w,h), b)



참고자료 :
https://stackoverflow.com/questions/56115874/how-to-convert-bounding-box-x1-y1-x2-y2-to-yolo-style-x-y-w-h

 

How to convert bounding box (x1, y1, x2, y2) to YOLO Style (X, Y, W, H)

I'm training a YOLO model, I have the bounding boxes in this format:- x1, y1, x2, y2 => ex (100, 100, 200, 200) I need to convert it to YOLO format to be something like:- X, Y, W, H => 0.436262 0.4...

stackoverflow.com

728x90
반응형