no image
[Dataset Augmentation] albumentations
Github https://github.com/albumentations-team/albumentations GitHub - albumentations-team/albumentations: Fast image augmentation library and an easy-to-use wrapper around other libraries. Fast image augmentation library and an easy-to-use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about the library: https://www.mdpi.com/2078-2489/11/2/125 -... github.co..
2023.04.26
no image
[Paper Reveiw] NMS Strikes Back
Paper : https://arxiv.org/pdf/2212.06137.pdf GitHub : https://github.com/jozhang97/DETA GitHub - jozhang97/DETA: Detection Transformers with Assignment Detection Transformers with Assignment. Contribute to jozhang97/DETA development by creating an account on GitHub. github.com Introduction 오늘 읽어볼 논문은 2022년 12월 쯤 나온 "NMS Strikes Back" 라는 논문입니다. Object Detection 모델 중 DETR(Detection Transformer)라는 ..
2023.02.22
no image
[Paper Review] Attention Mechanisms in Computer Vision, A Survey
이번에 읽을 논문은 컴퓨터 비전 분야에서 딥러닝 모델에 적용할 수 있는 Attention 방법에 대한 Survey 논문입니다. 딥러닝에 적용할 수 있는 Attention 방법들을 보기 좋게 정리해둔 사이트는 아래와 같습니다. 최근까지도 업데이트 되는 듯 합니다. 😎 (보통 GitHub에 Research Topic과 "Awesome"이라는 단어를 조합하여 검색하면 누군가 열심히 정리해둔 레포지토리가 나옵니다.) https://github.com/MenghaoGuo/Awesome-Vision-Attentions GitHub - MenghaoGuo/Awesome-Vision-Attentions: Summary of related papers on visual attention. Related code wil..
2022.07.05
[Deep Learning] Pre-trained model로 gray image를 학습하는 방법
보통 pre-trained model(ResNet 50, ...)의 경우 RGB 3채널을 가지는 color image 를 기반으로 학습을 진행하기 때문에 모델의 입력 정보는 (height, weight, channel=3) 으로 이루어지게 된다. 따라서 이러한 모델에 임의로 1채널을 가지는 gray image를 입력할 경우 shape error 가 발생하게 된다. 이는 단순히 모델의 첫 레이어의 채널을 변경한다고해서 해결되지 않는다. 정확히 말하면 에러는 해결되지만 학습 진행이 안된다. 따라서 pre-trained model로 gray image를 학습시키는 법은 다음과 같다. 1. 첫번째 conv layer 의 채널을 1로 변경하기 2. pretrained weight load 시 1채널로 변경된 첫번..
2022.04.06
no image
[Paper Review] ResNet strikes back: An improved training procedure in timm
저번에 페이스북에서 ResNet strikes back: An improved training procedure in timm 이라는 논문이 나왔다는 게시글을 보고 논문을 살펴보았습니다. 이 논문은 pytorch-image-models github (a.k.a timm)의 원작자인 Ross Wightman의 논문입니다. Ross-Wightman-github 에 들어가보니 소개글에 아래와 같이 적혀있었습니다. 개인적으로 깊이 감명 받았습니다. 🤩 Always learning, constantly curious. Building ML/AI systems, watching loss curves. 아무튼, 이 논문은 모델을 학습하는데 있어서 기본적이면서도 유용한 테크닉들이 잘 소개되어 있으며, 제안하는 학습방법..
2022.03.30
no image
[Dataset] MS COCO 데이터를 쉽게 이용할 수 있는 FiftyOne 사용하기
MS COCO Dataset 홈페이지에 오랜만에 들어가봤는데, 새로운 것을 발견해서 포스팅하기로 했다. FiftyOne 공식 문서 : https://voxel51.com/docs/fiftyone/# FiftyOne — FiftyOne 0.11.2 documentation Contents voxel51.com FiftyOne Github : https://github.com/voxel51/fiftyone GitHub - voxel51/fiftyone: The open-source tool for building high-quality datasets and computer vision models The open-source tool for building high-quality datasets and c..
2021.08.10
no image
[Deep Learning] 딥러닝에서 Synthetic Dataset 을 이용하여 학습하는 연구들
학습 데이터가 부족할 때 가상 세계에서 얻어진 데이터를 이용해 볼 수 있다. 즉 언리얼 엔진을 이용하여 만들어진 GTA 게임에서 Synthetic DataSet 을 생성하여 데이터를 보완 해 볼 수 있다. (GTA 게임 안해봄...) 찾아보니 관련 연구가 여러가지 있었는데 보통 Teacher-Student 형태의 학습 방식을 사용한다. 즉 대규모 데이터인 Synthetic Dataset을 이용하여 Teacher Net 을 구성하여 Pre-training 하고, Real Dataset 을 이용하여 Student Net 을 구성함으로써 fine-tuning 하는 방식이다. Synthetic Dataset 에는 보통 자율 주행 환경 (Car, Person Segmentation, ..) 데이터가 많았으며, 안..
2021.04.28
no image
[Dataset] COCO(Common Objects in Context) Dataset
COCO Dataset : cocodataset.org/#home COCO - Common Objects in Context cocodataset.org COCO API : github.com/cocodataset/cocoapi cocodataset/cocoapi COCO API - Dataset @ http://cocodataset.org/ . Contribute to cocodataset/cocoapi development by creating an account on GitHub. github.com COCO API 사용 예제 : github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoDemo.ipynb cocodataset/cocoapi COCO ..
2021.03.16
no image
[Deep Learning] Weight Standardization (+ 2D, 3D 구현 방법)
Weight Standardization Paper : arxiv.org/abs/1903.10520 Micro-Batch Training with Batch-Channel Normalization and Weight Standardization Batch Normalization (BN) has become an out-of-box technique to improve deep network training. However, its effectiveness is limited for micro-batch training, i.e., each GPU typically has only 1-2 images for training, which is inevitable for many computer v arxi..
2020.12.20
no image
[Image Processing] 구조적 요소(Structuring Element) 및 팽창, 침식, 닫힘, 열림 연산
수학적 형태학이란? 수학적 형태학(Mathematical Morphology, MM)은 집합론, 격자론, 위상수학 그리고 무작위 함수에 기반한 기하학적 구조를 분석하고 처리하는 이술과 기론이다. 이는 대부분 디지털 이미지에 적용되지만, 그래프, 폴리곤 메시, 솔리드, 그리고 많은 공간 구조에도 적용할 수 있다. 크기, 모양, 블록성, 연결성 그리고 지오데식 거리 같은 위상수학적 그리고 기하학적 연속 공간 개념은 MM에 의해서 연속 공간과 이산 공간 모두에서 소개되었다. 또한 이미지를 위의 특성화에 따르도록 이미지를 변환하는 연산의 집합으로 이루어진 형태학적 디지털 화상 처리의 근본이다. 구조적 요소란? 구조적 요소란 원본 이미지에 적용되는 커널(Kernel)이라고 할 수 있는데, 수학적 형태학에서 구조적..
2020.11.14
no image
[Paper Review] DCNv2 : Deformable Convolutional Networks v2
기존 DCN(Deformable Convolutional Networks) 설명은 아래 포스팅을 참고하기 바란다. 2020/03/08 - [AI Research Topic/Object Detection] - [Object Detection] Deformable Convolutional Networks Github : github.com/CharlesShang/DCNv2 CharlesShang/DCNv2 Deformable Convolutional Networks v2 with Pytorch. Contribute to CharlesShang/DCNv2 development by creating an account on GitHub. github.com Paper : arxiv.org/pdf/1811.111..
2020.11.01
no image
[Paper Review] ECA-Net : Efficient Channel Attention for Deep Convolutional Neural Networks
Paper : https://arxiv.org/pdf/1910.03151.pdf Github : https://github.com/BangguWu/ECANet BangguWu/ECANet Code for ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks - BangguWu/ECANet github.com ECA-Net 은 기존에 알려져있는 SENet 보다 성능이 좋아서 Object Detection, Image Classification, Object Segmentation 분야에서 사용되고 있는 모델이다. 기존 일반적인 CNN 구조에서는 Local Receptive Field 만을 가지고 학습을 하기 때문에 전체적인 ..
2020.10.10