no image
[Paper Review] Detecting Twenty-thousand Classes using Image-level Supervision
안녕하세요. 오랜만에 논문 리뷰를 해봅니다. 논문 리뷰가 뜸했던 시기에 Facebook 사명이 Meta 로 바뀌었네요. 논문 저자 소속에 Meta AI 가 적혀진 논문은 이제서야 처음 보는 듯 합니다. 😊 나스닥에서는 메타플랫폼스라고 바뀐 것을 바로 확인 했었는데... 이번에 리뷰할 논문은 Meta AI 에서 발표한 "Detecting Twenty-thousand Classes using Image-level Supervision" 라는 논문입니다. Detic 이라고도 합니다. "Detic: A Detector with image classes that can use image-level labels to easily train detectors." Detic 방법은 한마디로 축약하자면 기존 GT lab..
2022.02.20
no image
[Paper Review] An Image is Worth 16X16 Words : Transformers for Image Recognition at Scale
An Image is Worth 16X16 Words : Transformers for Image Recognition at Scale 위 논문은 자연어 처리(NLP) 분야에서 널리 사용되는 Transformer 개념을 컴퓨터 비전 분야에 적용해본 논문이다. 먼저 자연어 처리 분야에서 Transformer 개념은 어떤 것인지 살펴보는게 좋을 것 같다. NLP 에서의 Transformer 자연어 처리 분야에서는 문장과 같은 연결성이 중요한 시퀀스 데이터에서 RNN 계열의 모델이 많이 사용되는데 이는 직전의 출력 결과를 입력으로 사용하여 재귀적으로 활용하게 된다. 하지만 이는 좀 더 멀리 떨어진 단어 보다는 무조건 가까운 단어가 연관성이 높게 나타난다는 단점이 있다. 이러한 문제를 Long-term Depe..
2020.11.01