[Deep Learning] 3. 출력층 (항등함수, 소프트맥스함수)
이전 Deep Learning 포스팅 [Deep Learning] 1. 단층 퍼셉트론과 다층 퍼셉트론 [Deep Learning] 2. 신경망 (Sigmoid, ReLU) 기계학습 문제는 분류(Classification)와 회귀(Regression)로 나눌 수 있다. 분류는 데이터가 어느 클래스에 속하느냐의 문제이고, 회귀는 입력 데이터에서 연속적인 수치를 예측하는 문제이다. 이렇듯, 신경망의 출력층에서는 항등함수와 소프트맥스 함수를 이용하여 출력 값을 얻을 수 있다. 이는 분류와 회귀에 있어서 중요한 역할을 수행하게 된다. 또한, 기계학습의 문제풀이는 학습과 추론(Inference)의 두 단계를 거쳐 이뤄진다. 학습단계에서 모델을 학습하고, 추론 단계에서 앞서 학습 된 모델로 미지의 데이터에 대해서 추..
2017.06.12