728x90
반응형
COCO 데이터 세트 논문에 나와있는 클래스의 개수는 91이다.
Darknet 프레임워크에 나와있는 클래스의 개수는 80개이다.
COCO 데이터 세트의 2014 데이터와 2017 데이터 이름은 같으며,
단지, Paper 와의 약소한 차이인 누락된 클래스가 있다.
누락된 클래스 11개
- stop sign
- hat
- shoe
- eye glasses
- plate
- mirror
- window
- desk
- door
- blender
- hair brush
또한 참고로 COCO 주석인 json 파일에서 stop sign 에 대한 주석이 빠지면서 생긴 문제인지
train 및 val 의 이미지 개수와 annotation 개수의 차이가 다소 있다.
- train2017 : 118,287 장
- annotation (train2017) : 117,266
- val2017 : 5,000장
- annotation (val2017) : 4,952
COCO 클래스 목록
ID | Object (Paper) | Object (2014) | Object (2017) | Super Category |
1 | person | person | person | person |
2 | bicycle | bicycle | bicycle | vehicle |
3 | car | car | car | vehicle |
4 | motorcycle | motorcycle | motorcycle | vehicle |
5 | airplane | airplane | airplane | vehicle |
6 | bus | bus | bus | vehicle |
7 | train | train | train | vehicle |
8 | truck | truck | truck | vehicle |
9 | boat | boat | boat | vehicle |
10 | traffic light | traffic light | traffic light | outdoor |
11 | fire hydrant | fire hydrant | fire hydrant | outdoor |
12 | street sign | - | - | outdoor |
13 | stop sign | stop sign | stop sign | outdoor |
14 | parking meter | parking meter | parking meter | outdoor |
15 | bench | bench | bench | outdoor |
16 | bird | bird | bird | animal |
17 | cat | cat | cat | animal |
18 | dog | dog | dog | animal |
19 | horse | horse | horse | animal |
20 | sheep | sheep | sheep | animal |
21 | cow | cow | cow | animal |
22 | elephant | elephant | elephant | animal |
23 | bear | bear | bear | animal |
24 | zebra | zebra | zebra | animal |
25 | giraffe | giraffe | giraffe | animal |
26 | hat | - | - | accessory |
27 | backpack | backpack | backpack | accessory |
28 | umbrella | umbrella | umbrella | accessory |
29 | shoe | - | - | accessory |
30 | eye glasses | - | - | accessory |
31 | handbag | handbag | handbag | accessory |
32 | tie | tie | tie | accessory |
33 | suitcase | suitcase | suitcase | accessory |
34 | frisbee | frisbee | frisbee | sports |
35 | skis | skis | skis | sports |
36 | snowboard | snowboard | snowboard | sports |
37 | sports ball | sports ball | sports ball | sports |
38 | kite | kite | kite | sports |
39 | baseball bat | baseball bat | baseball bat | sports |
40 | baseball glove | baseball glove | baseball glove | sports |
41 | skateboard | skateboard | skateboard | sports |
42 | surfboard | surfboard | surfboard | sports |
43 | tennis racket | tennis racket | tennis racket | sports |
44 | bottle | bottle | bottle | kitchen |
45 | plate | - | - | kitchen |
46 | wine glass | wine glass | wine glass | kitchen |
47 | cup | cup | cup | kitchen |
48 | fork | fork | fork | kitchen |
49 | knife | knife | knife | kitchen |
50 | spoon | spoon | spoon | kitchen |
51 | bowl | bowl | bowl | kitchen |
52 | banana | banana | banana | food |
53 | apple | apple | apple | food |
54 | sandwich | sandwich | sandwich | food |
55 | orange | orange | orange | food |
56 | broccoli | broccoli | broccoli | food |
57 | carrot | carrot | carrot | food |
58 | hot dog | hot dog | hot dog | food |
59 | pizza | pizza | pizza | food |
60 | donut | donut | donut | food |
61 | cake | cake | cake | food |
62 | chair | chair | chair | furniture |
63 | couch | couch | couch | furniture |
64 | potted plant | potted plant | potted plant | furniture |
65 | bed | bed | bed | furniture |
66 | mirror | - | - | furniture |
67 | dining table | dining table | dining table | furniture |
68 | window | - | - | furniture |
69 | desk | - | - | furniture |
70 | toilet | toilet | toilet | furniture |
71 | door | - | - | furniture |
72 | tv | tv | tv | electronic |
73 | laptop | laptop | laptop | electronic |
74 | mouse | mouse | mouse | electronic |
75 | remote | remote | remote | electronic |
76 | keyboard | keyboard | keyboard | electronic |
77 | cell phone | cell phone | cell phone | electronic |
78 | microwave | microwave | microwave | appliance |
79 | oven | oven | oven | appliance |
80 | toaster | toaster | toaster | appliance |
81 | sink | sink | sink | appliance |
82 | refrigerator | refrigerator | refrigerator | appliance |
83 | blender | - | - | appliance |
84 | book | book | book | indoor |
85 | clock | clock | clock | indoor |
86 | vase | vase | vase | indoor |
87 | scissors | scissors | scissors | indoor |
88 | teddy bear | teddy bear | teddy bear | indoor |
89 | hair drier | hair drier | hair drier | indoor |
90 | toothbrush | toothbrush | toothbrush | indoor |
91 | hair brush | - | - | indoor |
그리고 참고로
COCO 2017 train 데이터는 COCO 2014 trainval 데이터와 같고,
COCO 2017 val 데이터는 COCO 2014 minival 데이터와 같다.
참고자료 1 :
https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
참고자료 2 :
https://github.com/mks0601/TF-SimpleHumanPose/issues/4
728x90
반응형
'AI Research Topic > Object Detection' 카테고리의 다른 글
[Object Detection] Gaussian YOLOv3 (0) | 2019.12.27 |
---|---|
[Object Detection] darknet custom 학습하기 (83) | 2019.10.16 |
[Object Detection] Darknet 학습 준비하기 (6) | 2019.10.08 |
[Object Detection] YOLO style 로 Bounding Box 값 바꾸기 (12) | 2019.09.17 |
[Object Detection] Darknet python (2) | 2019.09.04 |