no image
[Pose Estimation] waterfall module 기반으로 설계된 자세 추정 방법들 (UniPose, UniPose+, OmniPose, BAPose)
waterfall module 즉 WASP(Waterfall Atrous Spatial Pyramid)는 위 그림과 같은 구성으로 되어있으며 원래 semantic segmentation을 위해 multiscale fields-of-view(FOV)를 유지하면서 cascade architecture에서 progressive filtering을 활용하는 “Waterfall” Atrous Spatial Pooling 기반 방식으로 이루어진 모듈이다. 이와 같은 module로 설계된 자세 추정 방법들은 아래와 같다. 1. UniPose, Unified Human Pose Estimation in Single Images and Videos (CVPR 2020) WASP module (w/ a cascade of..
2022.04.20
no image
[Paper Review] UniPose, Unified Human Pose Estimation in Single Images and Videos
“Waterfall” Atrous Spatial Pooling architecture를 기반으로 인간의 자세를 추정하는 UniPose를 소개합니다. 참고로 Waterfall Atrous Spatial Pooling 방법은 semantic segmentation을 위해 multiscale fields-of-view를 유지하면서 cascade architecture에서 progressive filtering을 활용하는 module 입니다. 본 논문에서는 contextual segmentation 및 joint localization을 통합하여 statistical postprocessing 방법에 의존하지 않고 single stage 에서 인간의 자세를 높은 정확도로 추정한다고 합니다! 이러한 방법은 mul..
2022.04.20
no image
[Pose Estimation] Google Research의 MoveNet API
Google Research에서 TensorFlow.js 로 경량화된 자세 추정 모델인 MoveNet의 API를 공개하였습니다. 랩탑 환경에서도 30FPS 이상 달성한다고 합니다. 참고로 이를 기반으로 홈트레이닝 분야에 적용을 한 국내 논문 "딥러닝 기반 영상처리 기법 및 표준 운동 프로그램을 활용한 비대면 온라인 홈트레이닝 어플리케이션 연구"도 있네요. MoveNet은 17개의 keypoint를 감지하는 모델이며, 정확도에 초점을 맞춘 Thunder 버전과 속도에 초점을 맞춘 Lightning 버전을 제공하고 있습니다. 또한 JS 모델과 TF모델 및 TFLite모델(+ float16, int8)들을 제공하고 있습니다. 서버 호출 없이도 TensorFlow.js를 사용하는 브라우저에서 모델을 실행할 수 ..
2022.02.24
no image
[Paper Review] Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression
Paper : https://arxiv.org/pdf/2104.02300.pdf Github : https://github.com/HRNet/DEKR HRNet/DEKR This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300) - HRNet/DEKR github.com 오랜만에 읽고싶은 논문이 생겨서 이렇게 리뷰를 작성해본다. 논문은 그동안 가끔 읽었었는데 정리를 하는건 엄청 오랜만이라, pose estimation 카테고리에 쓸지, paper review 카테고리에서 쓸..
2021.06.23
no image
[Pose Estimation] NVIDIA TLT의 BodyPoseNet
NVIDIA Transfer Learning Toolkit(이하 TLT)에서 "BodyPoseNet" 과 함께 COCO 데이터를 사용하여 2D Pose Estimation 모델을 학습하고 INT8 등으로 최적화하는 방법에 대해 다루었다. 이는 기존 오픈 소스인 OpenPose 보다 AP가 8% 정도 떨어지지만 속도면에서는 아주 월등히 우수함을 보여준다. NVIDIA TLT에서 제공하는 BodyPoseNet은 VGG와 같은 백본 네트워크를 이용하여 confidence map 및 PAF를 이용하여 픽셀 단위 예측을 수행한 후 multi stage refinement (0 ~ N stages)로 구성된 구조를 사용하는 fully connected convolution 모델이며, 18개의 키포인트들을 예측한다...
2021.06.21
no image
[Pose Estimation] 자세를 분류하는 방법
아래 글은 Google 에서 나온 모바일용 ML Kit 의 한 부분인 자세 추정(Pose Estimation)을 이용하여 자세를 분류하는 방법에 관한 것이다. 자세를 분류하는 방법은 딥러닝을 이용하여 어떤 자세인지 분류하는 방법(e.g. CNN을 이용한 자세 분류)과 기계학습 알고리즘 중 하나인 SVM(Support Vector Machine)을 이용하여 자세를 분류하는 방법, 그리고 아래 Google에서 제시해 놓은 각도를 이용하여 자세를 분류하는 방법이 있다. 사실 필자가 생각하기에 가장 좋은 방법은 CNN을 이용하여 스켈레톤을 분류하거나, SVM으로 분류하는 것이 정확도 측면에서 좋다고 생각한다. 하지만 아래와 같이 간단하게 구현해 볼 수 있는 방법도 존재하기 때문에 이를 다뤄보고자 한다. 구글에서..
2021.03.01
no image
[Pose Estimation] 3D human pose estimation in video with temporal convolutions and semi-supervised training
이 논문은 Facebook AI Research 에서 나온 논문이며, CVPR 2019에 채택되었다. 3D Human Pose Estimation 분야를 찾아보다가 알게된 논문인데, 현존하는 SOTA 2D Pose Estimation 방법들과 잘 결합하면 비디오 환경에서 좋은 결과를 얻을 수 있을 것으로 예상된다. 관건은 정확도 높은 2D Pose Estimation 이다. 위 gif 들은 아마 2D Pose GT를 이용했기 때문에 3D Pose 가 매우 자연스러워 보인다. Paper : arxiv.org/pdf/1811.11742.pdf Github : github.com/facebookresearch/VideoPose3D facebookresearch/VideoPose3D Efficient 3D hu..
2020.12.21
no image
[Pose Estimation] 자세 추정 결과를 정제 하는 방법 (PoseFix : Model-agnostic General Human Pose Refinement Network)
본 포스팅은 아래 유튜브를 보다가 Pose Refinement 와 관련된 논문을 알게 되어 자세 추정 결과를 정제하는 방법에 대해 정리해본다. 논문은 참고로 서울대 문경식님의 논문이다. Moon, Gyeongsik, Ju Yong Chang, and Kyoung Mu Lee. "Posefix: Model-agnostic general human pose refinement network." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. 나중에 적용해봐야겠따. 또한 참고로 유튜브 링크는 아래와 같으며, Human Pose Estimation 을 처음 접하는 사람들에게 도움이 될만한 좋은 자료이다. [A..
2020.12.06
no image
[Pose Estimation] EfficientPose : Scalable single-person pose estimation
Groos, Daniel, Heri Ramampiaro, and Espen Ihlen. "EfficientPose: Scalable single-person pose estimation." arXiv preprint arXiv:2004.12186 (2020). Paper : arxiv.org/abs/2004.12186 EfficientPose: Scalable single-person pose estimation Human pose estimation facilitates markerless movement analysis in sports, as well as in clinical applications. Still, state-of-the-art models for human pose estimati..
2020.11.22
no image
[Paper Review] Toward fast and accurate human pose estimation via soft-gated skip connections
Bulat, Adrian, et al. "Toward fast and accurate human pose estimation via soft-gated skip connections." arXiv preprint arXiv:2002.11098 (2020). Paper : arxiv.org/abs/2002.11098 Toward fast and accurate human pose estimation via soft-gated skip connections This paper is on highly accurate and highly efficient human pose estimation. Recent works based on Fully Convolutional Networks (FCNs) have de..
2020.11.22
no image
[Pose Estimation] OCHuman(Occluded Human) Dataset API
Github : https://github.com/liruilong940607/OCHumanApi liruilong940607/OCHumanApi API for the dataset proposed in "Pose2Seg: Detection Free Human Instance Segmentation" @ CVPR2019. - liruilong940607/OCHumanApi github.com Project Page : http://www.liruilong.cn/projects/pose2seg/index.html Pose2Seg Pose2Seg: Detection Free Human Instance Segmentation Song-Hai Zhang 1, 2 Ruilong Li (first student a..
2020.08.11
no image
[Pose Estimation] 단일 이미지에서 3차원 자세를 추정하는 방법 및 문제점
단일 이미지에서 3차원으로 사람의 자세를 재구성(Reconstruction) 하는 방법은 깊이(Depth) 정보를 고유하게 복구 시킬 수 없다는 문제를 가진다. 이러한 깊이 모호성(Depth ambiguity)을 극복하기 위하여 사전에 정의된 body shape 과 pose 정보들을 이용해야한다. 최적화(Optimization)기반 방법들은 SMPL(Skinned Multi-Person Linear model) 및 SCAPE(Shape Completion and Animation of People) 와 같은 3차원 바디 모델을 assume 하고 최적화 알고리즘을 사용하여 2차원 자세들을 맞춘다. 초기 접근 방식에는 수동으로 입력을 주었지만, SMPLify 연구 부터 프로세스가 완전히 자동화 된 다음, "..
2020.06.02